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Abstract— This study investigates the use of adapters in
reinforcement learning for robotic skill generalization across
multiple robots and tasks. Traditional methods are typically
reliant on robot-specific retraining and face challenges such as
efficiency and adaptability, particularly when scaling to robots
with varying kinematics. We propose an alternative approach
where a disembodied (virtual) hand manipulator learns a task
(i.e., an abstract skill) and then transfers it to various robots
with different kinematic constraints without retraining the
entire model (i.e., the concrete, physical implementation of the
skill). Whilst adapters are commonly used in other domains
with strong supervision available, we show how weaker feed-
back from robotic control can be used to optimize task execution
by preserving the abstract skill dynamics whilst adapting to
new robotic domains. We demonstrate the effectiveness of our
method with experiments conducted in the SAPIEN ManiSkill
environment, showing improvements in generalization and task
success rates. All code, data, and additional videos are at this
GitHub link: https://kl-research.github.io/genrob.

I. INTRODUCTION

Learning generalizable robotic skills is a significant chal-
lenge in embodied intelligence, which includes generaliza-
tion across objects, tasks, and robots. Compared to the widely
explored vision-based object generalization [1], generaliza-
tion across different robots and different task trajectories
remains underexplored. This capability has a wide impact,
enabling robots to efficiently learn new skills or adapt
existing skills to similar domains. However, different robots
usually have varying kinematic configurations and morpholo-
gies, such as body structure and joint limits, leading to
different physical constraints and dynamic properties, posing
challenges to skill generalization.

Traditional skill learning methods often consider retraining
for new tasks on a specific single robot, such as by using
reinforcement learning (RL) [2]–[4] or imitation learning [5].
However, reinforcement learning often encounters problems
with sampling efficiency, and imitation learning struggles to
find perfectly corresponding robot samples. Recent works
designed skill generalization methods across multiple robots
and tasks using large robot learning datasets such as Open
X-embodiment [6] and foundation models [7], [8], which
requires significant computational resources. Another ap-
proach is the use of hierarchical or modular network designs
[9]–[13], including aligning internal features [9], encoding
robotic morphological information [10], and sharing modular
policies [11], [12]. However, they often focus on simplified
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Fig. 1. Demonstration of the proposed method. In this work, we study
the problem of using adapter-based fine-tuning on pre-trained policy models
for generalizable manipulation across different robotic platforms. We teach
a disembodied hand to learn tasks like opening a drawer and transfer these
skills to a whole-body robot, accounting for the robot’s specific constraints.

robotic morphologies, such as 2D arms [11] or omnidirec-
tional spherical hands [13], or limited tasks like grasping
[10]. In this paper, we aim to explore how a shared global
skill policy can effectively be applied on multiple high-
degree-of-freedom (high-DoF) mobile robot platforms.

Our key innovation is to teach an unconstrained, disem-
bodied hand manipulator to learn a skill, such as opening a
drawer or cabinet, and then transfer this skill to a constrained
whole-body robot. We consider these constraints as the
feasibility of the disembodied hand’s trajectory on a specific
robot. As the disembodied hand policy is not optimized
for the specific robot’s constraints and kinematic properties,
the trajectories generated by this policy are not optimal, or
even unfeasible, on new whole-body robots. For instance,
a robot with more DoFs and longer arms will have greater
adaptability, while smaller robots may find it more difficult
to follow the poses generated online by RL. To mitigate this
issue, we consider fine-tuning the existing policy network
and introducing robotic control feedback to optimize the RL
policy.

Recently, parameter-efficient fine-tuning (PEFT), such as
the Adapter technique [14]–[17], has proven effective for
pre-trained model fine-tuning and is widely used for gener-
alization in natural language processing [18] and visual gen-
eration fields [14]. It achieves specific domain adaptation by
inserting additional trainable layers into the existing model.
This method allows the model to adapt to new domains
with a small number of extra parameters while keeping
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the original parameters unchanged, which is particularly
useful in transfer learning and multi-task learning. Inspired
by this, we propose the integration of adapters into the
learning of generalizable robotic skills and explore the use of
robot feedback in RL to learn these adapters. This approach
enables the adaptation to new robots or tasks without the
necessity of retraining the entire model. We conjecture that
this method can better retain the original model’s knowledge
of skill dynamics while introducing an understanding of new
robots or tasks.

To implement this, we introduce parallel modules into the
original network, such as low-rank decomposed (LoRA) [19]
adapters, or sequential modules, such as low-dimensional
encoder-decoder structure adapters with residual design [20].
Then, in RL training, we design a feedback reward function
from the whole-body robotic control, which requires the
robot to solve joint configurations using a Newton-Raphson-
based Inverse Kinematics (IK) solver [21] at each step. If
an unfeasible solution is returned by the IK solver before
the robot completes the task, we will assign a negative
reward to RL policy. Hence, the adapter learns to optimize
the end-effector (EE) trajectory generated by the original
RL model. In addition to generalization across robots, we
further explore the application of adapter learning techniques
between similar tasks. For example, how skills like pulling a
drawer can be adapted and transferred to opening a door. We
found that this learning method is effective for transferring
robotic skill learning.

In summary, in this paper, we explore the following three
questions:
• How can adapters be used in robotic reinforcement learn-

ing to generalize a global skill across different robotic
embodiments?

• What impacts do various adapter architectures and fine-
tuning strategies have on skill generalization?

• Does adapter technology have broader application scenar-
ios, such as domain adaptation for similar tasks?
We studied the generalization of the drawer-opening skill

across three mobile manipulation robots in the SAPIEN
ManiSkill environment [22], including the ManiSkill A2-
Single-Arm Robot (A2Single), the Unitree Aliengo robot
[23] with Z1 arm [24] (AliengoZ1), and the Toyota Hu-
man Support Robot (HSR) [25]. Our research show that
adapter learning can effectively generalize among robots
with different physical constraints. Particularly, LoRA-type
adapters improved the success rate on new robots by 11% on
A2Single Arm, 15% on AliengoZ1, and 14% on HSR, com-
pared to vanilla full-finetuning. Our task-variant experiments,
including door opening and chair pushing tasks, indicate that
adapter learning also improves generalization among tasks.

II. RELATED WORK

A. Learning across robotic embodiments

Given the diverse landscape of robotics, mastering learning
across various robotic platforms emerges as a fundamental
topic within the field. Based on this concern, a consider-
able body of work is dedicated to exploring foundational
models [7], or delving into the potential of large language
models (LLMs) [26]. Additionally, others harness extensive

Fig. 2. Illustration of different approaches. Commonly seen approaches
for new robot/task transfer include learning from scratch and vanilla fine-
tuning. In this work, we adopt adapter learning with feedback reward in RL
for skill generalization from a pre-trained policy model.

datasets featuring a multitude of robots and demonstrations
for comprehensive training approaches, highlighted in the
study by the Open X-embodiment [27]. Concurrently, a
distinct trajectory in research adopts a structured approach
to manipulation policy learning, embracing the hierarchical
and modular constructs to bridge the embodiment disparities
across varied robotic entities, a notable example being the
work by [9]. Nevertheless, these studies often demarcate
their focus to either task simplification or specific transfer
facets such as 2D kinematic setups [11], end-effector design
variants [13], or adaptive visual perception strategies [28].
While there are relevant contributions in adjacent fields such
as robotic navigation and locomotion, exemplified by [29]
and [30] respectively, these studies tangentially relate to our
concentrated objective on robotic manipulation.

B. Generalizable manipulation policy learning
Learning generalizable manipulation skills is a crucial

topic in embodied AI research. Numerous works in the visual
domain have been proposed to address generalization among
objects, including domain-invariant 3D feature distillation
[31], 3D affordance learning [32], unified representations of
actionable parts [33], and enhancement of both policy and
visual modules through interactive perception [34], among
others. Additionally, in the domain of policy learning, various
works in visual reinforcement learning and imitation learning
have been proposed to solve generalization across objects
or tasks. For instance, methods that use decoupling or EE
action spaces [35], [36] or action primitives [37], [38] have
been put forward to increase the efficiency of reinforcement
learning and enhance generalizability. On the other hand,
modular structures, representational alignment [9], or ad-
versarial generative models [39] have proven effective in
generalizing across different objects and tasks. With the
advent of large models, recent work has involved integrating
Vision-and-Language Models (VLMs) [40] for action and
semantic matching, resulting in policies with improved gen-
eralizability.

C. Adapter Learning for Policy Model Fine-Tuning
PEFT, such as the adapter technique, is extensively utilized

for model domain adaptation. It was first applied in the field
of natural language processing; an example being the use of
Low-Rank Adaptation (LoRA) [19] for fine-tuning GPT-3
[41], which involves inserting trainable rank decomposition



Fig. 3. Coordinate system of robots and the disembodied hand. We
assess three different mobile manipulators equipped with the same end-
effector but featuring varying kinematic configurations.

matrices into each layer. Moreover, adapters are widely
adopted in the vision domain [14], [42]–[44]. For instance,
ViT-Adapter [42] can achieve performance comparable to
that of vision-specific transformers. Adapters are also used
in robotic imitation learning, as demonstrated by the work
of Liang et al (LoRA-Transformer) [45]. A notable example
is TAIL [46], which fine-tunes large, task-specific models.
This work is similar to pure vision fields, adapters are
used to adjust upstream visual perception modules for ma-
nipulation tasks, such as RoboAdapters [47]. Distinct from
these applications, our work contemplates the use of adapter
technology through RL for generalization across different
robotic platforms (as shown in Fig. 2), and we further explore
its adaptability across tasks.

III. METHODOLOGY

Our methodology focuses on transferring a learned skill
from an original robot, e.g., a disembodied hand, to other
different robotic platforms, e.g., whole-body mobile manip-
ulators, through the integration of adapters. The adapters
serve a dual purpose: fine-tune the model to fit the specific
kinematic constraints of a new robot whilst maintaining the
integrity of the original learned skill.

A. Problem Statement

Robotic manipulation policy learning can be formulated as
a Markov decision process (MDP) [48], which is represented
as (S,A,R,T,γ), where S is the set of states, A is the set of
actions, R(st ,at ,st+1) is the reward function, T (st+1|st ,at)
is the transition function as a probability distribution, and
γ is the discount factor for the future rewards. The agent
policy π(a|s) is the action selecting probability under a given
state s. The goal of RL is to maximize the return under the
policy Gπ = Eπ [∑t γ tR(st ,at ,st+1)]. In robot learning tasks,
we usually need to estimate the task-relevant states from
observation O, regarded as s = f (o). This setting is viewed
as a partially observable Markov decision process (POMDP)
[49] where the policy is π(a| f (o)).

In this work, we study the problem of generalizing skills
across robotic mobile manipulators, where the state space
being s= [sob j,srob] and the action space being a= [vee,q jaw].
We use a shared action space across robots and equip them
with the same two-parallel-jaw hand, as shown in Fig. 3.

B. Reinforcement Learning with Disembodied Hand

We first exploit the disembodied hand as the RL agent
to learn the abstract skill dynamics, whose DoFs are three
virtual prismatic joints and three virtual revolute joints. The
action space includes six desired velocities of the virtual

Fig. 4. Pipeline of our method. We integrate the adapter module into the
RL model and introduce a feedback reward function from the whole-body
robotic control. Through this way, the adapter learns to optimize the EE
trajectory generated by the original RL model for robot-level generalization.

joints vee ∈R6 and two desired positions of the finger joints
q f ,d ∈R2. For the cabinet environment in ManiSkill, we use
sob j = [scab,slink,shdl ,ssize], where scab is the base link pose
of the loaded cabinet, slink and shdl are the current poses
and the full poses (i.e., the poses when the drawer is fully
opened) of the target drawer link and the handle, and ssize is
the full length and the opening length of the target drawer.
The poses are all represented as world frame coordinates
and quaternions. In RL training, srob = see includes the hand
joints’ positions and velocities. We follow the dense reward
function designed in ManiSkill [22] to train the RL model:

Rms =


Rstg +Ree, d > dths,

Rstg +Ree +Rlink, d < dths, c < copen,

Rstg +Ree +Rlink +Rstc, d < dths, c > copen,

(1)

where Rstg increases from the first stage to the final and the
stage is defined by the distance between EE and the handle of
the target drawer d ∈R and the opening extent of the target
drawer cop ∈ [0,1]. More detailed definitions and coefficients
can be found in ManiSkill. The model is trained using soft
actor-critic (SAC) [50] algorithm. We view this process as
the model pre-training in this work and focus on how to
fine-tune the learned policy. The policy is represented as:

aee = πφ (sob j,see). (2)

C. Robotic Control Feedback Reward

Given that the RL agent is a disembodied free-floating
hand learning the dynamics of skills without considering the
constraints of any specific embodied robot control, trajecto-
ries that are unfeasible for the robot may occur during skill
transfer. Since different robots have different kinematic prop-
erties, it is difficult to design a unified constraint condition
on the disembodied hand agent without leading to highly
limited or sub-optimal trajectories. Therefore, we choose to
introduce adapter techniques to fine-tune the original model,
which requires us to design a feedback loop to optimize the
pre-trained policy network, as shown in Fig. 4.

We first parallel the environment of the disembodied hand
with that of the whole-body robot. The action aee,t executed
in the hand environment yields the next pose xt+1. We aim
to synchronize the robot’s EE to the pose of the disembodied
hand, which is expressed as:

xt+1 = pt+1 = p(qt +∆q), (3)



where p(q) denotes the forward kinematics equation, and q
represents the robot joint position. This desired joint position
can be obtained by computing the Jacobian matrix, where:

pt+1 = p(qt+1)≈ p(qt)+ J(qt)∆q (4)

therefore, the approximated value is:

∆q≈ J+(qt)∆p, (5)

where J+ is the pseudoinverse of the Jacobian matrix. We
use an IK solver based on the Newton-Raphson method to
iterate and find a numerical solution ∆qres s.t.:

p(qt +∆qres)− xt+1 < kerrtol (6)

For robots with high DoFs (considered to be more than 6
here), it is generally not easy to fall into a situation without
any IK solutions. However, a global-searching IK solver
cannot guarantee a smooth solution between the two EE
positions of consecutive time steps. Therefore, we added
a restriction to prevent the robot’s current configuration
from deviating more than kmaxdev along each axis. With
such a setting, the IK solver iteratively operates through
the Jacobian inverse technique. We use the IK-solve-nearby
function from the Klampt library [21] to achieve the above
setting, represented as:

qres,zres = Fik(q,∆p,kmaxdev,kerrtol ,kmaxiter), (7)

where zres = 1 when the IK has a feasible solution otherwise
zres = 0. qres is the solution joint configuration.

For each RL simulation step, we perform the IK cal-
culation for the robot and then control the robot to the
solution joint positions before the next RL prediction. Thus,
the EE poses that the robot cannot reach through the above
IK setting are considered non-compliant with the robot’s
kinematic constraints, and we use a reward function:

Rik =

{
+1, zres = 1,
−1, zres = 0.

(8)

This reward varies for different robots, as their kinematic
parameters differ, such as joint limits and the structure and
number of joints and links. Therefore, the final reward during
the fine-tuning process can be expressed as:

R = ωmsRms +ωikRik. (9)

D. Adapter Modules for Parameter Fine-Tuning
When considering fine-tuning the policy network to a

specific robot domain, the vanilla approach involves tuning
all of the parameters of the original network. However,
this method might overfit to the new domain, reducing the
model’s capability. Adapter technology offers an alternative
by introducing a small number of trainable parameters to
adjust the original network. A key benefit of this approach is
that transferring skills among different robots only requires
attaching the corresponding adapter network. This process
typically leaves the original network structure and inference
speed unaffected. Furthermore, the parameters of the pre-
trained policy network can be shared, streamlining the inte-
gration process. Common adapter structures include parallel
adapters, such as LoRA, and sequential adapters, such as

Fig. 5. Two types of adapters incorporated in this work. In our
implementation, we incorporate the adapters in both the policy (actor)
network and the Q-function network in the RL model.

the residual encoder-decoder, which can improve the model’s
generalizability.

The principle of LoRA is to parallel two low-dimensional
matrices in the network’s linear layers, represented as A and
B, with B initialized to zero. LoRA hypothesizes that the
rank of the parameters that need to be adjusted in the original
linear layer matrix is likely not high, e.g., 1/10 of the original
matrix, so the adjustment can be achieved through learning
A and B. Another commonly seen adapter pattern is the
encoder-decoder with non-linear activation functions using
residual structure (ResAdapter) to connect between original
layers. The scale parameter of the residual connection points
is initialized to zero. Both structures are widely used to adjust
networks based on MLP or Transformer architectures.

In this work, we integrate LoRA or ResAdapter into the
linear layers of our MLP, as shown in Fig. 5, and then we
use the above reward to finetune the networks. However,
we point out that the precise choice of the adapter is not
critical to our framework and that our method could relatively
easily incorporate other adapters. Since we are using the SAC
algorithm, we need to update the parameters of both the actor
and critic networks:

πφnn,φadapter : φadapter← φ
′
adapter,

Qθnn,θadapter : θadapter← θ
′
adapter,

(10)

where θ represents the critic (Q-function) parameters, and φ

represents the actor (policy) parameters.

E. Adjusted Adapter and Optimization Techniques for Task-
Specific Constraints

In addition to skill generalization across different robots,
we further explore more challenging scenarios, namely ap-
plying the adapter technique to generalization across tasks.
Different tasks typically have distinct trajectories, for in-
stance, as shown in Fig. 6, where pulling a drawer and
opening a door are characterized by circular and linear
motions respectively, while pushing a chair is usually in the
opposite direction to pulling a drawer. Due to significant
changes in skill dynamics, we designed a more complex
adapter module based on ResAdapter (as shown in Fig. 7)
to achieve this adaptation, which can take new inputs and
optimize outputs.



Fig. 6. Generalization to various tasks. We demonstrate the adapter
technique for generalizing a skill across other manipulation tasks.

Fig. 7. Adjusted adapter structure for task-level generalization. We
adjust the structure of ResAdapter to tune the pre-trained model for more
challenging scenarios such as new tasks.

To accommodate new tasks, we first align the input states
sob j with the corresponding task. For the door opening task,
we align the pose of the door handle and door link with the
drawer, retaining the original position but leaving the rotation
for the Adapter, represented as {sob j \s′ob j}. Additionally, we
equate the door’s arc length to the drawer’s linear length,
leaving the door’s radius to the Adapter. For the pushing
chair task, we map the main body link pose of the chair
to the handle and link pose of the drawer but reverse the
xy-plane coordinates.

The adjusted residual adapter uses a gate control for the
residual connection. The gating signal d < dths is the distance
between the hand and the operational part e.g., the backrest
or armrest of the chair. As the new skill dynamics change
largely compared to the original skill, in this scenario, we
allow the parameters of the original network to be fine-tuned
to achieve adaptation to the new states.

IV. EXPERIMENTAL RESULTS

A. Experimental Setups
1) Environments and tasks: We conducted experiments

in the SAPIEN ManiSkill simulation environment, choosing
the task of opening cabinet drawers as the basic task. The
criterion for task success is opening the target joint to
≥ 90% of its extent and that the EE poses are feasible
for the whole-body robots. For the drawer-opening task,
ManiSkill provides 25 cabinets with different geometries and
topologies, of which we randomly select 15 as the training
set and 10 as the test set. To evaluate the skill transfer to
different robots, the success criteria included the feasibility
of the EE poses in the trajectory, which is validated by
the Newton-Raphson-based IK solver described in Sec. III-
C. We also conducted experiments for task generalization,
considering the adaptation of the skill of opening drawers
to opening doors and pushing chairs. The success criterion
for the door-opening task is to open the specified joint to
≥ π/4 radian. For the pushing chair task, the criterion is
that the chair is close to the target position within 0.15 m
and remains standing upright. These tasks are also episodic,
with a maximum length of 200 steps (each step is 1/20 s).

2) Robotic mobile manipulators: In simulation, we
present three mobile manipulation robots, as in Fig. 1:
• Disembodied Hand: Modeled as a floating hand with

6-DoF and equipped with two parallel jaws, using the

Panda Hand as the collision model.
• Robot A - A2Single: Modeled as an 11-DoF robot with

a 4-DoF mobile base allowing for x, y, z translations
and yaw rotation. It features a Scirus body and a 7-DoF
Franka Panda arm.

• Robot B - HSR: Modeled as an 8-DoF robot with a
3-DoF mobile base for xy translation and yaw rotation,
and it is equipped with a 5-DoF arm.

• Robot C - AliengoZ1: Modeled as a 9-DoF robot with a
3-DoF mobile base for xy translation and yaw rotation.
Here, we follow the work of Habitat [51], assuming that
the base has 3 DoFs of command and ignoring the low-
level leg movements. In addition, the robot is fitted with
a 6-DoF Z1 robotic arm.

In our real-world experiments, we employ the HSR robot
for sim-to-real validation. The outcome and the supplemen-
tary videos are available on our project website.

3) Comparison Methods: We compare different methods
of generalization to robots: a) Direct-Transfer: directly
using the model of the trained disembodied hand agent,
b) Full-FineTune: tuning all the parameters of the original
model, c) ResAdapter: using the residual adapter with the
original model parameters frozen, and d) LoRA: using the
LoRA adapter with the original model parameters frozen.

B. Effectiveness of adapter learning for multi-robot transfer
Table I shows the average task success rates, episode

length in steps, and episode rewards. Comparing Direct-
Transfer and LoRA Adapter, we note that introducing robot
inverse kinematics control feedback reward can improve the
success rate of tasks and accelerate task completion time.
This indicates that RL-generated trajectories are optimized
such that the introduction of feedback from the specific
robot’s kinematic constraints improves the success. Mean-
while, by comparing Direct-Transfer and Full-Finetune, we
found that if the new scenario differs from the original
training scenario, directly fine-tuning a pre-trained model
may lead to overfitting. The pre-trained model might already
be optimized for the specific characteristics of its original
robot, and fine-tuning it on a different robot could cause
the model to overly adapt to the new scenario, thus leading
to poor generalization on unseen data. Comparing the fine-
tuned model performance on different robots, we find that
the adapter learning method is more effective for HSR and
AliengoZ1 than for A2Single. This might indicate that they
have more valid samples, i.e., infeasible poses generate corre-
sponding feedback. Since reward in reinforcement learning is
a weak supervisory signal, we consider introducing stronger
signals such as auxiliary loss in the future to improve tuning
efficiency. Our further experiment on LoRA shown in Fig.
11 illustrates that after applying LoRA on an embodied
robot, there is an improvement in the original domain, and
it can also be transferred to other robots, demonstrating the
effectiveness of the adapter. Meanwhile, the effect of LoRA
on the original robot is higher than on other robots, indicating
the necessity of applying adapters for each individual robot.

C. Impact of various adapters for skill generalization
Comparing the three methods of fine-tuning, we find that

fine-tuning the entire original model based on constraints



Fig. 8. Visualization of generalizing a skill across various robotic platforms.

Fig. 9. Training curve of transferring skill to three different high-DoF robots: A2 Single, Aliengo Z1 and HSR.

TABLE I
CROSS-ROBOT GENERALIZATION

Robot Method Success ↑ Length ↓ Reward ↓

Hand SAC 68% 115.85 -1084.91

Direct-Transfer 32% 155.64 -1500.25
A2Single Full-Finetune 25% 168.19 -1563.99

LoRA Adapter 36%↑11% 150.61 -1452.61

Direct-Transfer 27% 164.98 -1652.33
AliengoZ1 Full-Finetune 22% 169.26 -1702.40

LoRA Adapter 37%↑15% 150.85 -1503.93

Direct-Transfer 26% 163.20 -1508.26
HSR Full-Finetune 23% 170.51 -1619.22

LoRA Adapter 37%↑14% 148.29 -1410.24

presents a high success reward in training as shown in Fig. 9,
but relatively lower performance in the test set. This indicates
that although it meets the constraints of the new robot,
it leads to forgetting the ability to generalize. ResAdapter
presents a better performance in the test set, as shown in Fig.
10, by adjusting the intermediate features of the network and
deepening it through concatenation. LoRA overall performs
the best, indicating that adjusting the parameters of the MLP
linear layer in parallel can allow the network to maintain its
original good skill generalization ability while meeting the
specific kinematic constraints of the robot. We also compare
the two adapters’ performance on different robots in Table
II, and we visualize the task execution by the three robots
in Fig. 8, where their policies are fine-tuned by LoRA.

Fig. 10. Comparison of direct transfer and different tuning methods.
The values are averaged over the three robots.

(a) Task Success Rate (b) Episode length (steps)

Fig. 11. Cross-robot evaluation. The adapter is trained on one robot
(vertical labels), and tested on the other robot (horizontal labels).



TABLE II
CROSS-ROBOT GENERALIZATION

Robot Method Success ↑ Length ↓ Reward ↓

Hand SAC 68% 115.85 -1084.91

A2Single ResAdapter 28% 160.18 -1476.89
LoRA 36% 150.61 -1452.61

AliengoZ1 ResAdapter 27% 162.07 -1558.45
LoRA 37% 150.85 -1503.93

HSR ResAdapter 32% 156.35 -1481.21
LoRA 37% 148.29 -1410.24

TABLE III
CROSS-TASK GENERALIZATION

Robot Method Success ↑ Length ↓ Reward ↓

Opening Drawer SAC 0.68 115.85 -1084.91

Direct-Align 0. 200.00 -2026.08
Opening Door Full-Finetune 23% 174.76 -1807.69

Adapter 31%↑8% 172.09 -1735.80

Direct-Align 3% 196.61 -3794.65
Push Chair Full-Finetune 39% 166.17 -2267.71

Adapter 54%↑15% 152.77 -1954.63

D. Adapter-Based Tuning for Cross-Task Generalization
We further explore the generalizability of the adapter

technique at the task level, including transfer from opening
drawers to opening doors, and from opening drawers to
pushing chairs. We consider three methods to generalize
the original skill: direct alignment (using the input align-
ment described in the methodology), fine-tuning the original
network, and incorporating adapters for fine-tuning. Fig. 12
shows the training process, where using adapters for input
processing and output optimization allows the network to
converge faster during training and achieve higher rewards
in the door-opening task compared to fine-tuning the original
network with new inputs. Table III compares the success
rates on the test set, where we find that adapter-based
tuning has higher task success rates, indicating that adding
adapter modules can enhance the generalizability of the RL
policy across tasks. We also notice that transferring the
original skill policy to pushing chairs performs better than
transferring to doors opening task. This may be because the
skill dynamics of the chair are easier to adapt to compared
to the originally learned skill dynamics of the network. Fig.
13 shows typical scenarios for the three different tasks, from
which we can see that finetuning the pre-trained model can
achieve transformations of the skill dynamics.

V. CONCLUSIONS

Our findings indicate that adapter learning is a simple,
yet powerful strategy for generalizing robotic skills across
different robots and tasks, offering a parameter-efficient
alternative to full model retraining. By training first on an en-
tirely virtual disembodied manipulator, the adapter is simply
responsible for embodiment-specific adaptation. LoRA-type
adapters show improvement in task success rates, supporting
their potential for widespread application in robotic learning.
Future research may extend these techniques to a broader
range of tasks and robots, further enhancing the adaptability
and efficiency of robotic systems.

Fig. 12. Training curves of transferring the opening drawer skill to
the opening door task and the pushing chair task.

Fig. 13. Visualization of generalizing a skill across different tasks.
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